Electron and spin-density analysis of tirapazamine reduction chemistry.
نویسندگان
چکیده
Tirapazamine (TPZ, 1, 3-amino-1,2,4-benzotriazine 1,4-N,N-dioxide), the radical anion 2 formed by one-electron reduction of 1, and neutral radicals 3 and 4 formed by protonation of 2 at O(N4) or O(N1), respectively, and their N-OH homolyses 3 → 5 + ·OH and 4 → 6 + ·OH have been studied with configuration interaction theory, perturbation theory, and density functional theory. A comprehensive comparative analysis is presented of structures and electronic structures and with focus on the development of an understanding of the spin-density distributions of the radical species. The skeletons of radicals 3 and 4 are distinctly nonplanar, several stereoisomeric structures are discussed, and there exists an intrinsic preference for 3 over 4. The N-oxides 1, 5, and 6 have closed-shell singlet ground states and low-lying, singlet biradical (SP-1, SP-6) or biradicaloid (SP-5) excited states. The doublet radicals 2, 3, and 4 are heavily spin-polarized. Most of the spin density of the doublet radicals 2, 3, and 4 is located in one (N,O)-region, and in particular, 3 and 4 are not C3-centered radicals. Significant amounts of spin density occur in both rings in the singlet biradical(oid) excited states of 1, 5, and 6. The dipole moment of the N2-C3(X) bond is large, and the nature of X provides a powerful handle to modulate the N2-C3 bond polarity with opposite effects on the two NO regions. Our studies show very low proton affinities of radical anion 2 and suggest that the pK(a) of radical [2+H] might be lower than 6. Implications are discussed regarding the formation of hydroxyl from 3 and/or 4, regarding the ability of 5 and 6 to react with carbon-centered radicals in a manner that ultimately leads to oxygen transfer, and regarding the interpretation of the EPR spectra of reduced TPZ species and of their spin-trap adducts.
منابع مشابه
On the reaction mechanism of tirapazamine reduction chemistry: unimolecular N-OH homolysis, stepwise dehydration, or triazene ring-opening.
The initial steps of the activation of tirapazamine (TPZ, 1, 3-amino-1,2,4-benzotriazine 1,4-N,N-dioxide) under hypoxic conditions consist of the one-electron reduction of 1 to radical anion 2 and the protonation of 2 at O(N4) or O(N1) to form neutral radicals 3 and 4, respectively. There are some questions, however, as to whether radicals 3 and/or 4 will then undergo N-OH homolyses 3 → 5 + ·OH...
متن کامل3-amino-1,2,4-benzotriazine 4-oxide: characterization of a new metabolite arising from bioreductive processing of the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
Tirapazamine (1) is a promising antitumor agent that selectively causes DNA damage in hypoxic tumor cells, following one-electron bioreductive activation. Surprisingly, after more than 10 years of study, the products arising from bioreductive metabolism of tirapazamine have not been completely characterized. The two previously characterized metabolites are 3-amino-1,2,4-benzotriazine 1-oxide (3...
متن کاملThe Thermodynamic Properties of Polarized Metallic Nanowire in the Presence of Magnetic Field
In this article, the second quantization method has been used to investigate some thermodynamic properties of spin-polarized metallic nanowire in the presence of magnetic field at zero temperature. We have been observed that in different magnetic field, the equilibrium energy of system increases as the density increases. The spin-polarization parameter corresponding to the equilibrium state of ...
متن کاملMAGNETISATION AND ELECTRON SPIN RESONANCE STUDIES OF TETRAHEDRAL AMORPHOUS CARBON
The magnetisation and electron spin resonance (ESR) spectrum of two specimens of tetrahedral amorphous carbon (ta-C), deposited from a filtered cathodic arc, were measured over a wide temperature range. The magnetisation was found to consist of superparamagnetic, paramagnetic and diamagnetic contributions. The superparamagnetic contribution resembled that recently found in carbon prepared from ...
متن کاملSolitonic States in Organic Conducting Polymers
In a typical solitonic distribution, the soliton density is distributed over the entire moleculeand the present work shows how its density can be decomposed into solitonic and antisolitoniccomponents. It is found that there exists a unique electron as soliton over the anionicnanoconductor, while there are many other solitons and antisolitons. The solitonic states are furtherdecomposed to the ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2012